Exploring syntactic structured features over parse trees for relation extraction using kernel methods
نویسندگان
چکیده
Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper proposes to use the convolution kernel over parse trees together with support vector machines to model syntactic structured information for relation extraction. Compared with linear kernels, tree kernels can effectively explore implicitly huge syntactic structured features embedded in a parse tree. Our study reveals that the syntactic structured features embedded in a parse tree are very effective in relation extraction and can be well captured by the convolution tree kernel. Evaluation on the ACE benchmark corpora shows that using the convolution tree kernel only can achieve comparable performance with previous best-reported feature-based methods. It also shows that our method significantly outperforms previous two dependency tree kernels for relation extraction. Moreover, this paper proposes a composite kernel for relation extraction by combining the convolution tree kernel with a simple linear kernel. Our study reveals that the composite kernel can effectively capture both flat and structured features without extensive feature engineering, and easily scale to include more features. Evaluation on the ACE benchmark corpora shows that the composite kernel outperforms previous best-reported methods in relation extraction. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
This paper proposes to use a convolution kernel over parse trees to model syntactic structure information for relation extraction. Our study reveals that the syntactic structure features embedded in a parse tree are very effective for relation extraction and these features can be well captured by the convolution tree kernel. Evaluation on the ACE 2003 corpus shows that the convolution kernel ov...
متن کاملExploiting Rich Syntactic Information for Relation Extraction from Biomedical Articles∗
This paper proposes a ternary relation extraction method primarily based on rich syntactic information. We identify PROTEIN-ORGANISM-LOCATION relations in the text of biomedical articles. Different kernel functions are used with an SVM learner to integrate two sources of information from syntactic parse trees: (i) a large number of syntactic features that have been shown useful for Semantic Rol...
متن کاملA Composite Kernel to Extract Relations between Entities with Both Flat and Structured Features
This paper proposes a novel composite kernel for relation extraction. The composite kernel consists of two individual kernels: an entity kernel that allows for entity-related features and a convolution parse tree kernel that models syntactic information of relation examples. The motivation of our method is to fully utilize the nice properties of kernel methods to explore diverse knowledge for r...
متن کاملExploiting Rich Syntactic Information for Relationship Extraction from Biomedical Articles
This paper proposes a ternary relation extraction method primarily based on rich syntactic information. We identify PROTEIN-ORGANISM-LOCATION relations in the text of biomedical articles. Different kernel functions are used with an SVM learner to integrate two sources of information from syntactic parse trees: (i) a large number of syntactic features that have been shown useful for Semantic Rol...
متن کاملStudying Feature Generation From Various Data Representations For Answer Extraction
In this paper, we study how to generate features from various data representations, such as surface texts and parse trees, for answer extraction. Besides the features generated from the surface texts, we mainly discuss the feature generation in the parse trees. We propose and compare three methods, including feature vector, string kernel and tree kernel, to represent the syntactic features in S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Manage.
دوره 44 شماره
صفحات -
تاریخ انتشار 2008